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Method Requirements
The terrestrial water cycle is a key component of the Earth system
model, yet while conceptually key processes transport water laterally,
the representation is 1D in current models. We aim to identify and
implement a numerical method which satisfies the following
requirements:
I Accurate velocities on distorted grids
I Due to uncertain parameters, low order pressure is sufficient
I Target method should exhibit good strong scaling

Figure 1: Schematic of important hydrological processes in Earth system models

Initially, we will pare down the full system to study computational
efficiency/scalability of the spatial operator.
Strong form Find u and p such that,

u = −K∇p in Ω

∇ · u = f in Ω

p = g on ΓD

u · n = 0 on ΓN

Weak form Find u ∈ V and p ∈W such that,(
K−1u,v

)
= (p,∇ · v)− 〈g,v · n〉ΓD

, v ∈ V
(∇ · u,w) = (f ,w) , w ∈W

where V = {v ∈ Hdiv (Ω) : v · n = 0 on ΓN}, W = L2 (Ω)

Possible Method Families
I Finite volume methods: traditional two-point flux lacks geometric flexibility, low

flux accuracy, other methods address these weaknesses (Multi-point flux
approximation: O-method (MPFA-O))

I Continuous Galerkin finite elements: lack local conservation despite conceptual
simplicity and fewer unknowns, reduced flux accuracy, create artifacts deadly for
nonlinear problems (not considered)

I Discontinuous Galerkin finite elements: locally conservative but no continuity in
the flux, lower flux accuracy than in mixed finite elements, proliferate in numbers
of unknowns (not considered)

I Mixed finite elements: approximate the primal variable and flux simultaneously
using finite element pairs that satisfy the inf–sup condition. But the resulting
indefinite linear systems (saddle-point problems) require special solvers
(Brezzi–Douglas–Marini (BDM), Wheeler-Yotov (WY), Arnold-Boffi-Falk (ABF))

Mixed Finite Elements: BDM
Mixed finite element discretizations lead to saddle-point problems of
the type: [
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B 0

] [
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]
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]
which we solve using the physics-based preconditioning methods
implemented into PETSc’s fieldsplit. While intuitively this larger
system should cost more to solve than that of pressure only, in practice
this is not always true. It may also be that enriched spaces (such as
ABF) could provide better accuracy for marginal increases to solvers
and be a better option.

Wheeler-Yotov (WY)

In (Wheeler & Yotov, 2006) the authors develop a mixed finite element
method that reduces to cell-centered finite differences on quadrilateral
and simplicial grids and performs well for discontinuous full tensor
coefficients.
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Ingredients:
I Brezzi–Douglas–Marini (BDM1) velocity space
I Basis interpolatory at corners

N4(x4) · n0 = u40
N4(x4) · n1 = u41

I Vertex-based quadrature
I Constant pressure space

This means that velocity DOFs only couple to each other at vertices
and allows for local elimination. This leads to a symmetric positive
definite system in terms of pressures on which we can use algebraic
multigrid.
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Figure 2: Sample WY stencils. Under sufficient conditions, the stencil reduces to that of finite differences.
The WY methodology gives us a variationally consistent way to derive stencils as parameters change.

SPE10 Test Problem
As an initial stress test, we use the permeability from the SPE10
problem:
I 60× 220× 85 = 1,122,000 cells
I Diagonal permeability Kxx = Kyy 6= Kzz

I We induce flow by Dirichlet conditions
I Solve on original permeability and also rotate around two axes

Figure 3: Sample slice of the permeability field

We solve the SPE problem on Cori-Haskell and show strong scaling
results in Figure 4. While still a work in progress, we notice the
following from these results:
I WY (blue) is the most robust approach, it scales well for both the diagonal and full

tensor permeability. For the diagonal problem, its performance is equivalent to the
two point flux method with harmonic averaging of the permeability.

I Performance of the BDM method with depends heavily on the parameters of
pcfieldsplit. Solving using GMRES with CG/jacobi+CG/HYPRE (green) is
accurate, but hits the strong scaling limit quickly.

I If we loosen fieldsplit parameters and use preonly in place of CG (red),
performance is much better without a decline in accuracy

I None of the BDM methods work on the tensor problem with the default PETSc
options, we are working on a more specialized option using the WY matrix to
precondition the pressure system.
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Figure 4: (left) SPE10 diagonal permeability problem on a smaller grid such that all methods can run
(right) SPE10 tensor permeability, WY/AMG is the only method which solved

Important Information

This work has been implemented into a C-library based heavily on
PETSc, using not only their solvers but also the Plex and Section to
implement the discretizations. While written in C, we have FORTRAN
interfaces. The codebase is developed openly and available here:

https://github.com/TDycores-Project/TDycore
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